栏目分类
热点资讯
WBX中文网
你的位置:Circuits of Value中文网 > WBX中文网 > 锂电研究你必须要了解的锂电安全知识!
锂电研究你必须要了解的锂电安全知识!
发布日期:2025-01-04 15:26 点击次数:149
在当今能源制约、环境污染等大背景下,国家提出发展新能源作为改善环境、节约成本的重要举措。其中,电动汽车最近成为热点,越来越多的人选择电动汽车,不仅因为其用车成本低,而且电动汽车在使用过程中不会产生废气,和传统汽车相比不存在大气污染的问题。然而电动汽车安全事故的频发,让人不得不重新审视电动汽车的安全性。电池热失控是起火爆炸事故的主要原因。像特斯拉汽车、三星手机等起火事件都涉及到了锂离子电池的热失控问题。锂离子电池的工作温度范围很窄,在15~45℃之间,如果温度超过临界水平,便会发生热失控。锂离子电池一旦发生热失控,会引发停不下来的连锁反应,温度在几毫秒内迅速上升,内部产热远高于散热速率,电池内部积攒大量热量,使电池变成气体,导致电池起火和爆炸,并且几乎不能以常规方式扑灭,直接威胁到用户安全。当前引发锂电池热失控的因素多种多样,总结起来主要有过热、过充、内短路、碰撞等引起的发热失控。如何提高电池的安全性,把热失控的风险降至最低成为人们研究的重中之重。对于单电池来说,其安全性除了与正极材料相关外,还与负极、隔膜、电解液、粘结剂等其他电池组成部分有着很大关系。下面展开讲述研究者们是如何在电池材料上降低电池热失控风险,提高锂电池安全性。一、正极材料出于安全性考虑,正极材料需要与电解液的相容性和稳定性好。常见的正极材料在温度低于650℃时是相对比较稳定的,充电时处于亚稳定状态。在过充的情况下,正极的分解反应及其与电解液的反应放出大量热量,造成爆炸。钴酸锂、镍酸锂的热稳定都比较差,镍钴锰酸锂三元材料由于其比容量高、具有较高的比能量密度,成为当下正极材料的理想之选。然而三元材料中镍的含量较高,材料的循环性能难以保证,热稳定性较差。富镍正极材料在高电压(>4.3V)和高温(>50℃)下循环过程中发生结构坍塌导致二次颗粒连续产生微裂缝。这些微裂缝断开一次颗粒之间的电通路,在相转变过程中释放氧气,导致电化学性能变差。Jaephil Cho教授课题组[1]通过对一次颗粒进行纳米表面修饰来克服富镍正极材料的上述问题,经过处理的一次颗粒表面复含钴,通过抑制从分层结构到岩石盐结构的变化来缓解微裂纹产生。而且,表面高氧化态的Mn4+在高温下能够降低氧气的释放,改善结构稳定性与热稳定性。Sang Kyu Kwark等人[2]提出一种提高锂电池正极稳定性的方法,先采用经典的煅烧方法制备出NCA材料,然后将NCA浸入到醋酸锂和醋酸钴的混合溶液中,进一步搅拌、蒸干、煅烧得到改进的正极材料。有趣的是该方法制备的NCA颗粒之间填充着一层尖晶石构型的钴酸锂晶体Glue-layer(G-layer),能够将NCA颗粒紧密的连接在一起,起到胶水的作用。可以提高颗粒之间的机械强度,保护活性粒子不稳定的表面,从而增强电极的稳定性。Prof. Yingjie Zhu和Xianluo Hu合作[3],采用羟基磷灰石超长纳米线、科琴黑纳米颗粒,碳纤维和磷酸铁锂粉末作为原料,通过简单的静电辅助自组装的方法成功的制备了一种既可以耐高温、又具有活性物质高负载量的新型磷酸铁锂复合电极(UCFR-LFP),可以作为锂电池正极(图1)。在自组装和抽滤的过程中,磷酸铁锂纳米颗粒均匀得分散在高导电性且多孔的羟基磷灰石超长纳米线/科琴黑纳米颗粒/碳纤维基底中,从而形成自支撑、具有独特复合多孔结构的磷酸铁锂耐高温正极材料,其具有优异的热稳定性和耐火性,即使在1000℃的高温下也能保持其电化学活性和结构完整性。图1. UCFR-LFP复合电极的制备示意图二、负极材料负极材料的热稳定性与负极材料的种类、材料颗粒的大小以及负极所形成的SEI膜的稳定性有关。如将大小颗粒按一定配比制成负极即可达到扩大颗粒之间接触面积,降低电极阻抗,增加电极容量,减小活性金属锂析出可能性的目的。SEI 膜形成的质量直接影响锂离子电池的充放电性能与安全性,将碳材料表面弱氧化,或经还原、掺杂、表面改性的碳材料以及使用球形或纤维状的碳材料有助于SEI膜质量的提高。解决碳负极材料安全性的方法主要有降低负极材料的比表面积、提高SEI膜的热稳定性。三、隔膜Prof. Zhenan Bao和Yi Cui强强联合[4],报道了一种可有效防止锂电池过热起火的新技术,他们想在情况不可收拾之前关闭电池,通过在锂电池中增加一个热敏高分子聚合物薄膜“开关”材料,当电池温度过高就会迅速切断电池内电路,使之降温;当温度降至正常,该聚合物薄膜又能恢复正常状态,让电池重新工作(图2)。他们将具有石墨烯涂层的镍钠米粒子嵌入聚乙烯材料中,制备出一种轻薄又具有柔性的导电塑料薄,用这种聚合物膜组装成的锂电池,在正常的工作温度下,电流很容易通过薄膜,电池可以正常充电和放电,但是当电池的温度升高到70℃时,聚乙烯开始膨胀,推动镍纳米粒子彼此分开,这样隔膜的导电性在短短的1s之内就会降低1000亿倍,电池中的电荷移动停止,从而使电池的温度下降。而且,当温度低于这种聚合物70℃时,该聚合物可以很容易的恢复到原来的构型,导电性也恢复正常,恢复电池功能。图2. 聚合物膜在高温下的工作机理示意图Prof. Xianluo Hu和Yingjie Zhu等人[5]成功的研发出一种新型羟基磷灰石超长纳米线基耐高温锂电池隔膜,该电池隔膜除了具有柔韧性高、力学强度好、孔隙率高、电解液润湿和吸附性能优良的特点外,更重要的是热稳定性高、耐高温、阻燃耐火,在700℃的高温下仍可保持其结构完整性。采用羟基磷灰石超长纳米线基耐高温电池隔膜组装的电池在150℃高温环境中能够保持正常工作状态,并点亮小灯泡,而采用PP隔膜组装成的电池在150℃高温下很快发生短路,可以有效提高锂电池的工作温度和安全性。四、电解液锂电池电解液基本上是有机碳酸酯类物质,是一类易燃物。常用电解质盐六氟磷酸锂(LiPF6)存在热分解放热反应。因此提高电解液的安全性对动力锂离子电池的安全性控制至关重要。LiPF6的热稳定性是影响电解液热稳定的主要因素,因此目前主要改善方法是采用热稳定性更好的锂盐。但由于电解液本身分解的反应热十分小,对电池安全性能影响十分有限。对电池安全性影响更大的是其易燃性。降低电解液可燃性的途径主要是采用阻燃添加剂,但是这些阻燃剂往往会对锂电池的电化学性能产生严重的影响,因此难以在实际中应用。Hongfa Xiang等人[6]采用磷酸三甲酯(TMP)为溶剂,双氟磺酰亚胺锂为溶质,研发出一种新型高浓度不燃电解液。在高浓度(5mol/L)下,电解液中大部分TMP溶剂分子和Li+配位,形成特殊的溶剂化结构,这使得溶剂分子与负极之间的副反应减少,大大提高了电池的安全性。美国加州大学圣迭戈分校的Yu Qiao团队[7]采用胶囊封装的方式将阻燃剂二苄胺(DBA)储存在微型胶囊里,分散在电解液中,正常状态下不会对锂电池的性能产生影响,当电池受到挤压等外力破坏时,胶囊中的阻燃剂就会被释放出来,“毒化”电池使电池失效,从而避免热失控的发生。之后,他们团队又采用同样的技术,将乙二醇和乙二胺作为阻燃剂,封装后装入锂电池,能够显著降低锂电池热失控的风险[8]。Prof. Atsuo Yamada等人[9]采用高浓度NaN(SO2F)2或者LiN(SO2F)2作为锂盐,添加常见的阻燃剂磷酸三甲酯TMP,制备的电解液能够显著提高锂电池的热稳定性,而且阻燃剂的添加并没有对锂电池的循环性能产生影响。针对动力电池在使用中可能面临冲击的情况,Gabriel M. Veith等人[10]试图在根源上避免外力导致的锂电池内短路发生,设计了一种具有剪切增稠特性的电解液(图3),该电解液利用非牛顿流体的特性,在正常状态下,电解液呈现液体状态,在遭遇突然的冲击后则会呈现固体状态,变得异常坚固,甚至能够达到防弹的效果,从而从根源上避免了在动力电池发生碰撞时电池内短路导致热失控的风险。图3. 剪切增稠电解液示意图五、导电剂与粘结剂导电剂与粘结剂的种类与数量也影响着电池的热稳定性,粘结剂与锂在高温下反应产生大量的热,不同粘结剂发热量不同 , PVDF 的发热量几乎是无氟粘结剂的2倍 ,用无氟粘结剂代替PVDF可以提高电池的热稳定性。Jigang Zhou等人[11]最近还通过将复杂复合电极热失控前后的相分布进行单个电极颗粒层面的成像,并将多种相分离现象在热失控前后的相关性进行了纳米级别的可视化,发现热失控可能与导电剂以及粘结剂的分布呈现密切的相关性。他们创新性地将具有元素及轨道选择性、化学与电子结构敏感性的透射X光扫描显微技术(PEEM)用于研究热失控下钴酸锂层状电极颗粒在多孔电极中相分离中的行为。热失控前后相分离在单个电极颗粒层面呈现出超乎预测的不均匀化。这种不均匀化与颗粒尺寸、晶面结构相关性不明显,但与导电剂以及粘结剂的分布呈现密切的相关性。锂离子电池热失控严重威胁着使用者的生命还财产安全,提高锂离子电池的安全性、避免热失控的发生不仅需要从电池材料上做出改变,还需要结合电池配方设计、结构设计和电池组的热管理设计上多管齐下,共同提高锂电池热稳定性,减少热失控发生的可能性。参考文献:1.Hyejung Kim, Min Gyu Kim, Hu Young Jeong et al. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano Letters, 2015, 15:2111-2119.2. Hyejung Kim, Sanghan Lee, Hyeon Cho et al. Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glue-Nanofiller for Advanced Li-Ion Battery Cathode.Adv. Mater.,2016, 28:4705-4712.3.Heng Li, Long Peng, Dabei Wu et al. Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries. Advanced Energy Materials. 2019, 9:1802930.4.Zheng Chen, Po-Chun Hsu, Jeffrey Lopez et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nature Energy, 2016,1:15009.5.Heng Li, Dabei Wu, Jin Wuet al. Flexible, High-Wettability and Fire-Resistant Separators Based on Hydroxyapatite Nanowires for Advanced Lithium-Ion Batteries. Adv. Mater.,2017, 29:170354.6.Pengcheng Shi, Hao Zheng, Xin Liang et al. A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries. Chem. Commun., 2018, 54:4453-4456.7.Yang Shi, Daniel J. Noelle, Meng Wang et al. Exothermic behaviors of mechanically abused lithium-ion batteries with dibenzylamine, Journal of Power Sources, 2016, 326:514-521.8.Daniel J. Noelle, Yang Shi, Meng Wang et al. Aggressive electrolyte poisons and multifunctional fluids comprised of diols and diamines for emergency shutdown of lithium-ion batteries. Journal of Power Sources, 2018, 384:93-97.9.Jianhui Wang, Yuki Yamada, Keitaro Sodeyama et al. Fire-extinguishing organic electrolytes for safe batteries. Nature Energy, 2018, 3:22-29.10.Gabriel M. Veith, Beth L. Armstrong, Hsin Wang et al. Shear thickening electrolytes for high impact resistant batteries. ACS Energy Lett. 2017, 2:2084-2088.11.Mi Lu, Yongzhi Mao, Jian Wang et al. Surface heterogeneity in Li0.5CoO2within a porous composite electrode. Chem. Commun., 2018, 10:1039.